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Abstract
There have been recent predictions of topologically unavoidable branch
crossing in the energy band structure of solids. In this paper calculations
of energy dispersion relations are carried out in a number of crystals with
orthorhombic space group (SG) symmetry. Our calculations verify the
topological crossings and are in good agreement with the predictions based
on representations of SGs.

1. Introduction

The notion of accidental degeneracy in solids was first introduced by Herring in 1937 [1].
According to Herring, accidental degeneracy is ‘not necessitated by the symmetry and reality
of the Hamiltonian’. As is well known, the reality of the Hamiltonian was used by Wigner for
defining time reversal symmetry [2]. A degeneracy in the band structure of solids is understood
as a crossing or touching of two or more energy branches at a given point �k in the Brillouin
zone (BZ). The symmetry labelling of Bloch functions was started in a classical paper by
Bouckaert et al [3] on the basis of irreducible representations (irreps) of space groups (SGs).
This labelling was followed up by Herring to include time reversal, which uses the reality of
the Hamiltonian [4]. SG symmetry has also been used for symmetry labelling of Wannier
functions [5–7], which has eventually led to the definition of the band representations of
SGs [8]. Unlike an irrep of an SG which is labelled by symmetries of different k-vectors in the
BZ, a band representation assigns a symmetry label to entire energy bands,and thus enables one
to carry out a global analysis of them. This feature of globality was recently used for showing
that there exist topologically unavoidable crossings of energy branches in the band structure of
solids [9]. These crossings are similar to the accidental degeneracy predicted by Herring [1]
in that they are not necessitated by the symmetry and reality of the Hamiltonian. However,
they are also very different in the following sense. Accidental degeneracy depends on the
detailed functional dependence of the potential energy (and not only on its symmetry) and can
be removed by changing the form of the potential without changing its symmetry. On the other
hand, the topologically unavoidable branch crossing is a consequence of symmetry and global
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continuity of the Bloch functions in their dependence on the �k-vector in the BZ. The location
in �k-space of the topological crossing can be moved by changing the potential, but it cannot
be removed as long as the symmetry of the crystal is kept unchanged.

In this paper we present examples of topologically unavoidable energy branch crossings
in a great variety of crystals with orthorhombic SG symmetry. These crossings were recently
predicted on the basis of band representation analysis [10] in combination with continuity
chords [8]. The numerical results are presented in the form of energy dispersion relations in a
number of directions in the BZ. The crossings usually occur between two branches and they
can appear in one or more directions in the BZ. In [10] rules were established for predicting
the topological crossings, and in this paper our numerical results confirm these crossings and
enable us to associate each crossing with the rule that leads to it. The main attention is paid in
this paper to branch crossings in crystals with orthorhombic non-symmorphic SG symmetry.
As was shown in [10] there are a number of orthorhombic SGs which should exhibit topological
crossings. We confirm this prediction by carrying out a band structure calculation for some
actual crystals with orthorhombic SG symmetry.

2. Identification of representations

Depending on the desired physical properties one can choose extended Bloch functions or
localized Wannier functions for the bases of electronic wavefunctions. Bloch functions have
been widely used in band calculations whereas Wannier functions have been revived due to
their advantage for some local phenomena such as impurities, surface effects, polarizations
etc.

Most electronic structure calculation methods, LAPW, LMTO, OPW, KKR and so on, are
based on Bloch functions and use two kinds of basis for eigenstates,depending on the sharpness
of the crystal potential. In the atomic core region, where the potential is very sharp, spherical
harmonics are used for the solutions of the radial Schrödinger equation. In the interstitial
region between atoms, where the potential is smooth, the plane wave basis is used. In order to
determine the SG symmetry properties of eigenstates, it suffices to analyse the wavefunction
in the interstitial region.

For our numerical works we used two methods, the FLAPW method [11] and the pseudo-
potential method [12]. Both methods are based on the density functional theory employing the
local density approximation for the exchange–correlation energy functional. They differ in the
way of treating the potentials due to the nuclei and the core electrons but they both use plane
wave expansions to approximate the wavefunctions in the interstitial region. The eigenstate
ψn�k , where n is the band index and �k is a reciprocal vector in the first BZ, is expressed in the
plane wave basis in the following form:

ψn�k =
∑

�K
cn( �K )ei�k·�r exp(i �K · �r), (1)

where �K is a reciprocal lattice vector. The summation is over all reciprocal lattice vectors, the
number of which is infinite in theory but is cut off to a finite number in numerical calculations.

The symmetry of the Hamiltonian H of a crystal is specified in the way the atoms are
positioned in the lattice. By specifying the atomic positions in the unit cell in a Bravais lattice
we determine the SG G of the crystal. Since the Hamiltonian H commutes with the operations
of the SG G the eigenstates are often degenerate and transform like a representation vector of
G. Thus the symmetry of the wavefunction is specified by identifying its SG representation.
In order to find which representation of the little group G �k of �k the calculated eigenstates carry,
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Table 1. Crystal structures for six materials.

Crystal SG Lattice parameter (Å) Atomic position

Ag2Se 19 P212121 a = 4.333, b = 7.062, c = 7.764 Ag1 (0.357, 0.619, 0.456)
Ag2 (0.978, 0.279, 0.361)
Se (0.608, 0.485, 0.149)

AsGeSe 52 Pnna a = 5.062, b = 10.117, c = 11.687 As (0.0781, 0.4148, 0.1282)
Ge1 (0.25, 0.0, 0.7640)
Ge2 (0.2873, 0.25, 0.25)
Se (0.9288, 0.8435, 0.1091)

OPb 57 Pbcm a = 5.891, b = 5.489, c = 4.775 O (0.8691, 0.0886, 0.25)
Pb (0.2309, 0.9792, 0.25)

CMo2 60 Pbcn a = 4.732, b = 6.037, c = 5.204 C1 (0.0, 0.355, 0.25)
C2 (0.0, 0.866, 0.25)
Mo (0.249, 0.130, 0.083)

PdSe2 61 Pbca a = 5.741, b = 5.866, c = 7.691 Pd (0.0, 0.0, 0.0)
Se (0.112, 0.117, 0.407)

BFe 62 Pnma a = 5.506, b = 2.952, c = 4.061 B (0.031, 0.25, 0.620)
Fe (0.180, 0.25, 0.125)

we use the following projection identity [2]:

φi =
∑

R

χi(R)Rψn�k , (2)

where ψn�k is the computed wavefunction, R is a group operation which corresponds to an
element of the little group G �k and χi (R) is the character of the R operation in the i th
representation of G �k . Since ψn�k is symmetrized with respect to the little group operations, ψn�k
belongs to one of the irreps of G �k . If ψn�k does not belong to the i th irrep, φi is zero due to the
orthogonality between two different representations. If ψn�k belongs to an irrep, only one of φi

is non-zero, while the others are zero.
We computed energy bands of six materials, Ag2Se, AsGeSe, OPb, CMo2, PdSe2 and

BFe. Their crystal structures are given in table 1. All information is taken from Pearson’s
handbook [13]. Kohn–Sham equations [14] were solved with the FLAPW method [11],
where self-consistency was achieved until averaged charge difference within the atomic sphere
(determined by RMT ) becomes less than 0.001 electrons. All parameters in computation for the
six crystals are given in table 2. RMT is the muffin-tin radius for each atom in atomic units. The
LDA for the exchange–correlation potential (VXC) is that of Perdew and Wang [15]. The GGA
for VXC is that of Perdew et al [16]. R ∗ Kmax is the smallest of all atomic radii multiplied by
the plane wave cut-off of the wavefunction in atomic unit. l is the maximum angular quantum
number of partial waves used inside atomic spheres. Gmax is the plane wave cut-off of charge
density in atomic unit. In the last column, the number of mesh points along each primitive
axis of the orthohombic BZ is given as (n1 × n2 × n3) and the number of inequivalent �k points
out of n1n2n3 points is specified. We used the FLAPW method implemented by the WIEN
group [17] and double-checked the results with the pseudo-potential method implemented by
the FHI group [18].

Let us take an example. The crystal BFe has the orthohombic structure. Its SG number
is 62 (Pnma). Its band structure is illustrated in figure 6 below. We consider the special
points �, X and Y in the BZ. Characters of irreps of the little groups at points �, X and Y are
given in table 3(a)–(c) [19, 20]. Inserting the characters given in table 3 into equation (2), it is
straightforward to find irreps of the eigenstates ψn�k , at each �k point.
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Table 2. Parameters used in the FLAPW computation.

Crystal RMT (au) VXC R ∗ Kmax l Gmax �k points

Ag2Se Ag: 2.4, Se: 2.3 LDA 7.0 10 10.0 8 (3 × 2 × 2)

AsGeSe As: 2.2, Ge: 2.2, Se: 2.2 LDA 6.0 10 10.0 6 (4 × 2 × 1)

OPb O: 2.0, Pb: 2.0 GGA 8.0 10 10.0 27 (4 × 4 × 5)

CMo2 C: 1.75, Mo: 2.0 GGA 7.0 10 10.0 27 (5 × 4 × 4)

PdSe2 Pd: 2.25, Se: 2.2 LDA 7.0 10 10.0 18 (4 × 4 × 3)

BFe B: 1.7, Fe: 2.0 GGA 8.0 10 10.0 45 (4 × 8 × 5)

Table 3. (a) Irreps of SG 62 (Pnma, D16
2h) (taken from [19]). (a) Irreps at �k = (0, 0, 0). E is the

identity and I is the inversion operation. U x means twofold rotation about the x axis. σ x means
reflection by a plane normal to the x axis. (b) Irreps at �k = ( π

a , 0, 0). (c) Irreps at �k = (0, π
b , 0).

(a)

� �1 �2 �3 �4 �5 �6 �7 �8

E 1 1 1 1 1 1 1 1
U x 1 1 −1 −1 1 1 −1 −1
U y 1 −1 1 −1 1 −1 1 −1
U z 1 −1 −1 1 1 −1 −1 1
I 1 1 1 1 −1 −1 −1 −1
σ x 1 1 −1 −1 −1 −1 1 1
σ y 1 −1 1 −1 −1 1 −1 1
σ z 1 −1 −1 1 −1 1 1 −1

(b)

X X1 X2

E 2 2
(σ y |0 b

2 0) 2 −2

(c)

Y Y1 Y2

E 2 2
(σ z | a

2 0 c
2 ) 2 −2

Having identified the irrep of the eigenstates, we can go on to form the basis functions for
the irrep. We use the method of projection operators given in [21],

f jl =
∑

R

M(R)∗jl Rψn�k . (3)

The j th partner in a set of basis functions, M(R) jl is the matrix element of the operator R
between the j th and the lth basis functions. Each l gives a different set of basis functions. Let
us take an example X1. The two-dimensional irrep is generated by

M(U x | 1
2

1
2

1
2 ) ≡

(
0 −1
1 0

)
, M(U z | 1

2 0 1
2 ) ≡

(
1 0
0 −1

)
,

M(σ x | 1
2

1
2

1
2 ) ≡

(
1 0
0 −1

)
.

(4)

Using equation (3) we obtain two sets of two-dimensional bases for X1:

u(1)

1 (x, y, z) = 2{exp(i2π(nx + 1
2 )x) + i(−1)m exp(−i2π(nx + 1

2 )x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd, (5)
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u(1)

2 (x, y, z) = 2{− exp(−i2π(nx + 1
2 )x) + i(−1)m exp(i2π(nx + 1

2 )x)}e−i2πnzz

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd; (6)

u(2)

1 (x, y, z) = 2{− exp(−i2π(nx + 1
2 )x) − i(−1)m exp(i2π(nx + 1

2 )x)}e−i2πnzz

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd, (7)

u(2)

2 (x, y, z) = 2{exp(i2π(nx + 1
2 )x) − i(−1)m exp(−i2π(nx + 1

2 )x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd, (8)

where m = nx − nz + ny , exp(ikx
a
2 ) = exp(iπ/2) = i. The wavefunction for X1 computed by

whatever method should be expressible in terms of the above bases.
Using equation (3) we obtain one-dimensional bases for �1, �3, �8 and �6:

v1(x, y, z) = 2{exp(i2πnx x) + (−1)m exp(−i2πnx x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd

+ 2{exp(−i2πnx x) + (−1)m exp(i2πnx x)}e−i2πnz z

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd, (9)

v3(x, y, z) = 2{exp(i2πnx x) − (−1)m exp(−i2πnx x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd

+ 2{exp(−i2πnx x) − (−1)m exp(i2πnx x)}e−i2πnz z

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd, (10)

v8(x, y, z) = 2{exp(i2πnx x) + (−1)m exp(−i2πnx x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd

− 2{exp(−i2πnx x) + (−1)m exp(i2πnx x)}e−i2πnz z

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd, (11)

v6(x, y, z) = 2{exp(i2πnx x) − (−1)m exp(−i2πnx x)}ei2πnzz

× cos(2πny y) for ny = even

× sin(2πny y) for ny = odd

− 2{exp(−i2πnx x) − (−1)m exp(i2πnx x)}e−i2πnz z

× cos(2πny y) for ny = even

× (−1) sin(2πny y) for ny = odd, (12)

where m = nx − nz + ny .
Since kx = 0 at the �-point we can obtain vk(x, y, z) from u( j)

i (x, y, z) by replacing
1
2 with zero and i with unity. With this recipe we get u(1)

1 − u(2)
1 → v1, u(1)

1 + u(2)
1 → v8,

u(2)

2 − u(1)

2 → v3 and u(2)

2 + u(1)

2 → v6.
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In the same way as for X1, we obtain two sets of two-dimensional bases for Y1 and Y2:

w
(1)

1 (x, y, z) = [ei(α+β) + (−1)ny(−1)me−i(α+β)]eiγ

+ [e−i(α+β) + (−1)ny (−1)mei(α+β)]e−iγ for Y1

− [e−i(α+β) + (−1)ny (−1)mei(α+β)]e−iγ for Y2, (13)

w
(1)
2 (x, y, z) = i[(−1)mei(α−β) + (−1)ny e−i(α−β)]e−iγ

+ i[(−1)me−i(α−β) + (−1)ny ei(α−β)]eiγ for Y1

− i[(−1)me−i(α−β) + (−1)ny ei(α−β)]eiγ for Y2, (14)

w
(2)

1 (x, y, z) = i[(−1)mei(α−β) − (−1)ny e−i(α−β)]e−iγ

− i[(−1)me−i(α−β) − (−1)ny ei(α−β)]eiγ for Y1

+ i[(−1)me−i(α−β) − (−1)ny ei(α−β)]eiγ for Y2, (15)

w
(2)

2 (x, y, z) = [ei(α+β) − (−1)ny(−1)me−i(α+β)]eiγ

− [e−i(α+β) − (−1)ny (−1)mei(α+β)]e−iγ , for Y1

+ [e−i(α+β) − (−1)ny (−1)mei(α+β)]e−iγ , for Y2, (16)

where exp(iky
b
2 ) = exp(iπ/2) = i, α = 2πnx x , β = 2π(ny + 1

2 )y and γ = 2πnzz.

Once again we can obtain vk(x, y, z) from w
( j)
i (x, y, z) by replacing 1

2 with zero and

i with unity. We get w
(1)

1 + w
(1)

2 → v1, w
(2)

1 + w
(2)

2 → v6 for Y1 and w
(1)

1 − w
(1)

2 → v8,
w

(2)

2 − w
(2)

1 → v3 for Y2.
While a Bloch state is an energy eigenstate for a particular wavevector �k, a Wannier

function describes an energy band as a whole. Wannier functions (generalized Wannier
functions for composite bands) form bases of a band representation. Whereas the conventional
irrep of an SG G is induced from a small representation of the little group of a wavevector �k,
G �k ⊆ G, an irreducible elementary band representation is induced from a small irrep of the
little group of the Wyckoff position �w, G �w ⊆ G.

Given the SG and the Wyckoff position �w one finds the number of branches b( �w, ρ) of an
elementary band representation (a full classification of elementary band representations was
given in [22]) according to the formula (see [9, 10])

b( �w, ρ) = [dim D( �w,ρ)]
|P|
|G �w| , (17)

where [dim D( �w,ρ)] is the dimension of the irrep D( �w,ρ) of the little group G �w of the Wyckoff
position �w and |P| and |G �w| are the numbers of elements of the group P (the point group of
the SG) and G �w. In table 5 we list those Wyckoff positions which correspond to the lowest
energy band in each solid. For all of them dim D( �w,ρ) = 1. For SG no 19 (P212121) the point
group is D2 ≡ 222, and the little group G �w is the unit element only. For all other cases chosen
in table 5 the point group P is D2h ≡ mmm, and the little group G �w consists of two elements,
the unit element and a rotation by π , a reflection in a plane or the inversion (see table 5). For
all of them, |P| = 8 and |G �w| = 2. From equation (17) and table 5 it then follows that all the
elementary energy bands that we consider have four branches.

Now let us investigate how the four branches of the elementary band associated with
a Wyckoff position are grouped into a single family. From table 4 there are four Wyckoff
positions in SG number 62, three special positions and one general position. Three positions,
whose labels are (a), (b) and (c), have two symmetry operations that leave each position
invariant up to equivalence. Wyckoff positions (a) and (b) have an inversion symmetry 1̄ and
(c) has (σ y |0 b

2 0)-symmetry.



Numerical verification of topological crossings in band structure of solids 2011

Table 4. Wyckoff positions and their symmetries of SG 62 (taken from [25]).

Multiplicity Wyckoff letter Site symmetry Coordinates

8 d 1 (1) x, y, z (2) x̄ + 1
2 , ȳ, z + 1

2 (3) x̄, y + 1
2 , z̄

(4) x + 1
2 , ȳ + 1

2 , z̄ + 1
2 (5) x̄, ȳ, z̄ (6) x + 1

2 , y, z̄ + 1
2

(7) x, ȳ + 1
2 , z (8) x̄ + 1

2 , y + 1
2 , z + 1

2

4 c .m. x, 1
4 , z x̄ + 1

2 , 3
4 , z + 1

2 x̄, 3
4 , z̄ x + 1

2 , 1
4 , z̄ + 1

2

4 b 1̄ 0, 0, 1
2

1
2 , 0, 0 0, 1

2 , 1
2

1
2 , 1

2 , 0

4 a 1̄ 0, 0, 0 1
2 , 0, 1

2 0, 1
2 , 0 1

2 , 1
2 , 1

2

Table 5. Listing of crystals with corresponding symmetries for which energy band calculations are
carried out in this paper. The information in the first seven columns is explained in the headings.
The explanation of the last two columns is given in the text.

Symmetry elements
Point Wyckoff Isotropy Band and directions in

SG group position group representation Crystal Rule BZ

19 P212121 222 a(xyz) E (a, 1) Ag2Se 2b U x (X), U y(Y), U z(Z)

52 Pnna mmm c
( a

4
0z

)
Cz

2 (c, 2) AsGeSe 1 σ z(X), σ z(Y)

57 Pbcm mmm d
(

xy
c

4

)
Cz

s (d, 1) OPb 2a σ x (Z), σ z(Y)

60 Pbcn mmm c
(

0y
c

4

)
C y

2 (c, 1) CMo2 2a σ x (Z),U y (Y)

61 Pbca mmm b
(

00
c

2

)
Ci (b, 1) PdSe2 2a σ x (Z), σ z(Y)

62 Pnma mmm c
(

x
b

4
z
)

C y
s (c, 1) BFe 2a σ z(Y), σ y(X)

In equation (17), |P| = 8, |G �w| = 2 and [dim D( �w,ρ)] = 1 for each Wyckoff position a, b
and c. The elementary band is composed of four branches. In figure 6 there is one elementary
band which has branches with the irreps �1, �3, �6 and �8 at the � point and X1 at the X
point. From the symmetries of these eigenstates at the � and X points, we can determine the
symmetry of the band, that is the symmetry of the Wannier function. In the character table 3(a),
�1, �3, �6 and �8 are even under (σ y |0 b

2 0). In the case of the X point, X1 has even parity
under (σ y |0 b

2 0). Therefore all branches of the elementary band have the even parity under
(σ y |0 b

2 0). If we denote such a kind of band as (c, 1), the band structure in figure 6 consists of
one (c, 1) elementary band.

3. Unavoidable branch crossing examples and comparison with the rules

With this information at hand one can now easily see how one predicts topological branch
crossing for the SGs in table 5 [9, 10]. In the centre of the BZ �, all the irreps of these SGs are
one-dimensional, because their point groups are Abelian. On the other hand, on the surface of
the BZ there is a number of �k-vectors at which the energy is doubly degenerate [19]. In order
to follow in more detail how the branch crossing comes about, let us denote the symmetries
of the four branches at � by �i , i = 1, 2, 3, 4 in the order of growing energy. Also, assume
that at the points X and Y on the surface of the BZ we have two-dimensional representations
only. We denote them by X1, X2 and by Y1, Y2. By using the notion of continuity chords [8]
one can follow the symmetry of the branches when going from the centre � of the BZ to the
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Figure 1. Energy curves for the lowest four-branch energy band in Ag2Se in the y- and z-directions.
�, Y and Z are symmetry points in the BZ. �1, �2, �3 and �4 label the one-dimensional irreps of
SG no 19 P212121 in the centre of the BZ �. Y1 and Z1 are two-dimensional irreps of P212121
on the surface of the BZ [19]. The branch crossing is in the y-direction.

surface. As an example, let us assume that by symmetry and continuity the energy dispersion
curves that start at the �-point as �1 and �2 have to join at the surface where they become
together X1, and that in the Y -direction �1 and �3 have to come together at Y1. It is easy to see
that this will necessarily lead to an unavoidable crossing in either the X- or Y -direction in the
BZ. A detailed derivation of such unavoidable crossings, including rules for their appearance
is given in [10].

We turn now to our numerical results for the materials in table 5. As mentioned above we
calculate the energy dispersion relations for the crystals in table 5. These crystals were chosen
from [23] which lists different materials that crystallize according to a given SG symmetry.
We find that all the lowest lying energy bands for the crystals in table 5 have four branches
and that there is a crossing of these branches at least in one direction in the BZ as predicted.
The results of our computations are presented in figures 1–6, where we give only the lowest
energy band for each crystal. In all cases of figures 1–6 the next energy band is separated from
the lowest band by an energy gap.

In [10] two rules were established for predicting what we call topologically unavoidable
crossings in the band structure of solids. Rule 1 says that if there exists a symmetry element
which has different characters in two different directions in BZ, then in one of these directions
there is necessarily a crossing. One can check that rule 1 applies to the four-branch energy
band in figure 2 for the crystal AsGeSe. The last two columns of table 5 list the rules that
apply for predicting the crossing. For the Pnna SG symmetry the character of the σ z-element
(reflection in the plane perpendicular to the z-axis) at the X-point on the surface of the BZ
(see [19]) is χ(σ z) = ±2; it is +2 for X1 and −2 for X2 (see figure 2). One can check that σ z

is a symmetry element in the X- and Y -directions of the BZ. But its character at the surface of
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Figure 2. The same as in figure 1 but for the crystal AsGeSe in x- and y-directions of the BZ with
SG no 52 Pnna. Here the topologically unavoidable crossing is in the y-direction. The crossing
in the figure in the x-direction is not required by symmetry and topology.

Figure 3. The same as in figure 1 but for the crystal OPb with SG no 57 Pbcm. The topologically
unavoidable crossing is in the y-direction. The crossing in the figure in the z-direction is not
required by symmetry and topology.
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Figure 4. The same as in figure 1 but for the crystal CMo2 with SG no 60 Pbcn. The topologically
unavoidable crossing is in the z-direction.

Figure 5. The same as in figure 1 but for the crystal PdSe2 with SG no 61 Pbca. The topologically
unavoidable crossing is in the y-direction.

the BZ at Y is zero, χ(σ z) = 0 (see figure 2). The characters of the irreps of SGs can be found
in [19]. The last two columns of table 5 list rule 1 for the SG 52 and the symmetry element σ z

for the X- and Y -directions.
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Figure 6. The same as in figure 2 but for the crystal BFe with SG no 62 Pnma. There are two
topologically unavoidable crossings in the y-direction.

Rule 2 for branch crossings in [10] consists of two parts, 2a and 2b.

Rule 2a. If there exist two symmetry elements which have characters equal to ±2 in two
different directions in the BZ, then in one of these directions there is necessarily a crossing.

Rule 2b. If there exist three symmetry elements which have characters zero in two or three
different directions in the BZ, then in one of these directions there is necessarily a crossing.

One can check that rule 2b applies to the four-branch band in figure 1 for the crystal Ag2Se,
and that rule 2a applies to the four-branch bands in figures 3, 4, 5 and 6, respectively for the
crystals OPb, CMo2, PdSe2 and BFe. This is shown in table 5, in the column before last.
In the last column of table 5 we list the symmetry elements and the directions in the BZ (in
the parentheses) which leads to the prediction of the crossings. Thus, for SG no 19 we list
in the last column of table 5 the elements U x , U y, U z whose characters are zero (rule 2b).
For the groups 57, 60, 61 and 62 rule 2a applies. It should be pointed out that the SGs in
table 5 all have different Wyckoff positions (the (c, 1) Wyckoff positions for SGs 60 and 62
are different despite their identical notation) and different little groups, and nevertheless the
lowest four-branch energy band exhibits branch crossings. This feature of branch crossing was
predicted in [10] and our calculations therefore confirm this prediction. Among the listing in
table 5 is SG no 62 with the international symbol Pnma. In [23] it is pointed out that there
are 794 inorganic crystals that crystallize with the Pnma symmetry. We claim that all these
crystals should be expected to have topologically unavoidable branch crossings. An example
of such a band crossing for GeS with the Pnma SG symmetry is found in [24].

4. Conclusion

In conclusion, our calculations confirm topological band crossings in the band structure
of crystals having the symmetry of six non-symmorphic orthorhombic SGs (see table 5).
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According to [24], there are more than 1000 inorganic crystals and more than 1100 organic
crystals that crystallize with the symmetry of these six SGs. This actually means that the
phenomenon of topological branch crossing is highly abundant in nature. We have considered
in detail the orthorhombic SGs, but topological branch crossing is not restricted to them only,
and should exist in crystals with other SG symmetry. One should expect that the topological
crossing will have an influence on the density of states of the crystal. Since the crossing point
of the branches can be moved by changing the potential energy without changing its symmetry,
application of pressure to the crystal can cause changes in the density of states in the BZ.
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